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A many-band conductivity model has been derived and applied to analyze the concentration dependence of
the electrical residual resistivity �RR� of several actinides based disordered alloys. It was qualitatively shown
that equal probabilities of s→d and s→ f transitions of scattered conductivity electrons lead to the deviations
from Nordgeim’s rule observed in these alloys. Numerical evaluation of RR of neptunium, plutonium, ameri-
cium, and curium based alloys was made within the coherent potential approximation �CPA� derived for the
many-band conductivity model. Numerical calculations were made using ab initio obtained bcc-Np and fcc-Pu,
Am, and Cm densities of states, as the starting point for the iterative CPA procedure. The results of the RR
modeling were compared with available experimental data and allow us to conclude that the proposed model
offers promising opportunities to investigate RR of similar classes of alloys.
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I. INTRODUCTION

Electrical resistivity of actinide metals and alloys has
been investigated experimentally for a rather long time due
to the complexity of the problem.1–5 At normal conditions
pure Np and Cm demonstrate metallic type of temperature
dependencies of electrical resistivity with characteristic value
at room temperature about 60–140 �� · cm.2,5 On the other
hand, Am, which is an ordinary metal at ambient pressure
with slightly enhanced electrical resistivity �70 �� · cm,
shows a striking growth of the resistivity almost of an order
of magnitude up to 500 �� · cm during the transition into
orthorhombic structure at the pressures above 16 GPa.3,4,6

Moreover, the negative temperature coefficient of electrical
resistivity at high temperature was found in some �-Pu dilute
alloys.1,7–10 With regard to above mentioned, some ordinary
kinetic and magnetic properties observed in transuranium
metals look rather anomalous. One can suppose that these
anomalies originate mostly from peculiarities of their elec-
tronic ground state.

Basing on calculated electronic ground-state properties of
Np, Pu, Am, and Cm, a number of well-known anomalies in
temperature dependencies of electrical resistivity of Pu-based
dilute alloys as well as ordinary metallic type of electrical
resistivity of pure Np, Cm, and Am was explained.11,12

Mott’s two-band conductivity model combined with the co-
herent potential approximation �CPA� allowed analyzing this
problem from the most general point of view. It follows from
these calculations that initial ground state of 5f-electron be-
havior in actinides does not affect electrical resistivity re-

sponse of these metals, which is determined mostly by evo-
lution of the density-of-states �DOS� curve at the Fermi level
with temperature.

It is a well-known fact that electronic structure of alloy
differs significantly from that of initial pure metals. In this
paper we study how this modification of the electronic struc-
ture influences the electrical residual resistivity �RR� and
other kinetic and magnetic properties of actinides concen-
trated alloys.

The RR of actinide based alloys �AcBAs� was investi-
gated experimentally in Np-Pu2 and Am-Pu4 systems. The
characteristic values of the RR are about 100÷150 �� · cm,
which exceed those for 3d-5d transition-metal based alloys
�TMBAs�. Such high values of the RR for AcBA could be
explained qualitatively within the Mott two-band conductiv-
ity model.13 In this model, the value of resistivity is deter-
mined by the value of DOS of appropriate conductivity band
at the Fermi level. These values in actinide’s d and f bands
surpass significantly those in 3d-5d metals and the RR be-
havior in AcBA and TMBA is different. In TMBA the RR
value slightly depends on concentration of alloy components,
whereas essential shift of the RR maximum from equal con-
centrations point was observed in AcBA.

In the case of TMBA, the nature of such a shift was ex-
plained using the assumption that the DOS of the alloy at the
Fermi level is a weighted average of DOSs of alloy compo-
nents. It was shown that accounting for the difference be-
tween d-band DOS values at the Fermi level of alloy com-
ponents and using Nordgeim rule the RR maximum is
always shifted toward metal with the larger value of DOS at
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the Fermi level.14 However, perturbation-theory calculation
of RR concentration dependencies for actinides alloys is not
valid, due to nonsmall intensity of electron-impurity interac-
tion. Moreover, self-consistent procedure is necessary to re-
produce specific feature of electrons scattering and realistic
concentration dependencies of RR in real alloys.

The anomalies in electrical resistivity behavior in the Pu-
based dilute alloys and ordinary temperature dependence of
pure Np, Pu, Am, and Cm were explained within an ordinary
Mott two band conductivity model without any assumptions
concerning intensity of electron-impurity and electron-
phonon interactions, using ab initio calculated DOS of met-
als. Similar approach could be useful to understand the RR
concentration dependencies in the concentrated disordered
alloys of artificial metals. However, in the general case, only
many-band conductivity model is suitable, because �i� tran-
sitions of �s+ p�-electrons into almost empty d and f bands
have equal probabilities and �ii� the values of electrons cou-
pling are different for various �s+ p�, d, and f bands in con-
centrated alloys.

Modern investigations indicate quasimetallic behavior of
5f electrons in Th, U, and Np. On the other hand, in heavy
actinides �Am, Cm, Bk, and Cf� 5f electrons are almost lo-
calized. Plutonium takes a significant place in this series and
demonstrates an intermediate behavior of 5f electrons with
the increase in localization induced by �-� transition.

The DOS and other ground-state properties of solid states
can be determined by modern numerical calculations, based
on the density-functional theory.15 For example, the standard
local �spin� density approximation with accounting for Hub-
bard �U� interaction �L�S�DA+U� allows one to reproduce
well the ground-state properties of many compounds except
the plutonium and metals beyond it in the Periodic Table.16

The problem arises due to comparable strength of spin-orbit
coupling �SOC� �about 1 eV for Pu� and exchange �Hund’s�
interaction �about 0.5 eV�.

Recently, correct treatment of both Coulomb repulsion
and spin-orbit interaction in rotation invariant form allowed
to describe a nonmagnetic ground state of fcc-Pu with six 5f
electrons with almost filled J=5 /2 subband and almost
empty J=7 /2 one.16–19 Ground-state properties of other ac-
tinides at normal conditions were calculated elsewhere.6,19–21

Numerous band methods based on the density-functional
theory have been applied to investigate the electronic struc-
ture of plutonium. Approving a well-known fact that the
DFT can correctly reproduce experimental crystal structures,
a phase diagram of plutonium was found in good agreement
with experiment.18,22 Investigations carried out in frame of
the LDA+U+SO method demonstrated that the nonmagnetic
ground state of plutonium is provided by J=0 total moment
and can easily be broken.16 This conclusion agrees well with
the result of the “around-the-mean-field” version of LDA
+U.17 The resulting DOS shows that the spin-orbit coupling
leads to sufficiently separated fulfilled j=5 /2 subband,
which is located just below the Fermi level, and almost
empty j=7 /2 subband, which is shifted due to strong Cou-
lomb interaction to 3–4 eV above the Fermi level. This result
is determined by the f6 configuration of the plutonium f
shell. Recent experiments revealed f5 configuration in
�-plutonium.23 Better agreement with experiment can be

found in other calculations.22,24 The review of the problem
could be found elsewhere.16,19,25,26

The LDA+U+SO method has been chosen as a starting
point and resulted DOSs of actinides under consideration
were used for CPA simulations. The CPA approach allows
modeling DOS of a disordered alloy for various concentra-
tions of components and does not require cumbersome su-
percells as it would be needed in the alternative approach of
supercells.

In this paper we present at first, the derivation of many-
band CPA equations and some qualitative results of RR
model calculations of actinide alloys. Then, starting from
results of numerical simulations for bcc-neptunium, fcc-
plutonium and americium,16,19 and fcc-curium,12 the RR con-
centration dependence in their alloys was analyzed from the
most general point of view, in terms of CPA for the many-
band conductivity model. The complex structure of d, f elec-
tron DOSs, and their deformation due to electron-impurity
interactions have been accounted. Thus we have avoided
some debatable models and any assumptions concerning the
features of DOS near the Fermi level as well as assumptions
about the weakness of interaction.

II. MODEL AND MANY BAND CPA EQUATIONS

Let us consider the s�p�, d, and f electrons performing
intraband and interband transitions �without spin flips� as a
result of scattering at Coulomb fields of randomly distributed
ions of alloy components. We take into account that prob-
abilities of interband scattering of s�p� conductivity electrons
�s→d and s→ f� are proportional to DOSs values at the
Fermi level of corresponding bands. Moreover these values
are comparable. Hence we assume that �i� s�p� conductivity
electrons perform mainly interband transitions s→d and s
→ f , �ii� accepted d or f bands are partially filled. According
to the conditions, let us consider a Hamiltonian, describing
systems of s�p�, d, and f electrons,

Ĥ = Ĥ0 + V̂ ,

Ĥ0 = �
l

Elal
+al,

V̂ =
1

N
�

n,l,l�

e−i�k�−k�� ,R� n�Bl,l�al
+al�, �1�

where El is a periodical part of total energy of an electron
with the quantum number l, including band index j(j
=s�p� ,d , f), and wave vector k�; R� n is a radius vector of the
nth site of a crystal lattice,

Bl,l��n� = ��n���k� j,k�� j� j,j� + �k� j,k�� j��1 − � j,j��� . �2�

Factor ��n�=�A�n�cB−�B�n�cA describes ions of alloy com-
ponents randomly distributed over the sites of a crystal lat-
tice, �A�B��n�=1 if the site number n is occupied by an ion of
the sort A�B�, and it equals to zero in another case. Intensities
of intraband and interband transitions of electrons are de-
scribed by parameters �ll and �ll�, respectively.
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The s, p, d, and f bands overlap and therefore hybridiza-
tion effects have to be taken into account. However, it is well
known that they lead only to renormalization of the electron
ground-state Hamiltonian and do not change its scattering
part. Realistic DOSs of actinides used in our calculations
take into account the hybridization effects of s�p�, d, and f

bands that enables us to take them into consideration in Ĥ0
and for simplicity we keep the same band names after renor-
malization.

We derive the equations for many-band CPA using the

condition of diagonality of the shift operator in the Ĥ0 rep-
resentation. Hence, total resolvent of the full energy operator

Ĥ is

R̂ = �z − Ĥ�−1. �3�

The diagonal part of the total resolvent R̂ in the Ĥ0 rep-
resentation is

Ĝ = �z − Ĥ0 − 	̂�−1, �4�

where 	̂ is a diagonal operator �in the Ĥ0 representation�

	̂ =
1

N
�

n,l,l�

e−i�k�−k�� ,R� n�	 j� j j�al
+al. �5�

The real part of coherent potential 	 j determines the shift 
 j,
and its imaginary part � j determines the broadening of
single-electron levels.

Using the Dyson equation

R̂ = Ĝ + Ĝ�V̂ − 	̂�R̂ , �6�

a scattering operator T̂ can be determined in convenient form
as

R̂ − Ĝ = ĜT̂Ĝ . �7�

Multiplying the right and left sides of Eq. �7� by Ĝ−1, the
following expression for the scattering operator is obtained:

T̂ = Ĝ−1�R̂ − Ĝ�Ĝ−1. �8�

This expression determines the order of matrix products and
allows one to avoid difficulties associated with the choice of
right- or left-matrix products. Using the Dyson Eq. �6� and
expression �8�, we obtain the following operator series:

	̂ = ��V̂ − 	̂�Ĝ�V̂ − 	̂� + �V̂ − 	̂�Ĝ�V̂ − 	̂�Ĝ�V̂ − 	̂� + ¯�diag.

�9�

The diag index means that only diagonal part of the sum of

operator products in the Ĥ0 representation should be taken. It
was shown in Ref. 27, that the series �9� has reciprocally
compensated terms, containing the shift operator in indirect
form. Excluding these compensated terms from expression
�9�, one obtains finally the shift operator

	̂ = �V̂ĜV̂ + V̂ĜV̂ĜV̂ + . . .�D = V̂ĜV̂�1 − ĜV̂�−1. �10�

The D index means that in � . . . �D all diagonal terms in the

Ĥ0 representation are kept and these compensated items are
already omitted.

Summation �10� can be performed conveniently in a ma-

trix form. Since the Ĝ and 	̂ operators are diagonal in the H0
representation, we determine Green’s functions F, the coher-

ent potential 	̂,

F = �Fs

Fd

Ff
�, 	 = �	s

	d

	 f
� , �11�

and interaction V, where we consider �ll and �ll� as indepen-
dent on k� and k�� wave vectors

V = �Bss Bsd Bsf

Bds Bdd Bdf

Bfs Bfd Bf f
� . �12�

Here

Fj =
1

N
�

k�

1

�z − Ek�,j − 	 j�
�13�

is the Green’s function of an electron in the jth band.
Within single-electron and single-site approaches and no-

tations �5, 11–13�, the series �10� is summed up accurately
with the following condition: 	Fj� j j�	�1.

Band-structure calculation shows that the value of partial
DOSs of d and f electrons at the Fermi level in actinides is
much higher than that of s�p� electrons. Therefore, it is rea-
sonable to assume that in pure actinide metals and their al-
loys 	� jFs	1 and 	�Fs	1, which means that s�p� conduc-
tivity electrons perform mainly interband transitions s→d
and s→ f . Using this simplification, the result of summation
of the matrix series for 	 j�j=s ,d , f� could be written as fol-
lows:

	s =
1

A
�
j�j�


BsjFjBjs�1 − Fj�Bj�j�� + BsjFjBjj�Fj�Bj�j� , �14�

	 j =
1

A

BjjFjBjj�1 − Fj�Bj�j�� + Bjj�Fj�Bj�j�1 + FjBjj�� , �15�

where

A = �1 − FdBdd��1 − FfBf f� − BdfFfBfdFd. �16�

Note, that the entire system of CPA equations could be de-
rived in the same way, without any simplifications. However,
its analysis would not give any new significant or important
result.

Averaging Eqs. �14� and �15� over configuration, denoting
� j j =� j for coherent potentials for s ,d, and f bands, one ob-
tains the following system:
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	s = �
j�j�

cA

�cB�sj�2Fj�1 − cB� j�Fj�� + �cB�3�FjFj�

�1 − cB�dFd��1 − cB� fFf� − �cB�df�2FdFf

+ cB

�cA�sj�2Fj�1 + cA� j�Fj�� − �cA�3�FjFj�

�1 + cA�dFd��1 + cA� fFf� − �cA�df�2FdFf
, �17�

	d = cA
�cB�d�2Fd�1 − cB� fFf� + �cB�df�2Ff�1 + cB�dFd�

�1 − cB�dFd��1 − cB� fFf� − �cB�df�2FdFf

+ cB
�cA�d�2Fd�1 + cA� fFf� − �cA�df�2Ff�1 − cA�dFd�

�1 + cA�dFd��1 + cA� fFf� − �cA�df�2FdFf
,

�18�

where �=�sd�sf�df. The equation for coherent potential of f
electrons could be obtained from Eq. �18� replacing band
indexes f ↔d.

Neglecting interband transitions, i.e., �=0 as follows
from Eqs. �17� and �18�, three independent equations corre-
sponding to the single-band model of CPA could be written,

	 j = cA
�cB� j�2Fj

1 − cB� jFj
+ cB

�cA� j�2Fj

1 + cA� jFj
. �19�

In the case of the single-band model, Eq. �19� for coherent
potential differs from the Soven CPA equation28 since the
latter was obtained assuming that the average of single-site
scattering matrix T over configurations is zero, �Tnconf =0.

In the second order of perturbation theory in the weak-
coupling limit for s electrons the following result could be
written:

	s
�2� = �

j

Bjj
2 Fj . �20�

Note, that the terms in the third order are

	s
�3� = �

j,�j�j��

�BsjFjBjj + Bsj�Fj�Bj�j�FjBjs. �21�

These are the products of the Green’s functions of d and f
electrons, which is important for accurate calculation of RR.

Equations �17� and �18� contain a number of parameters
describing intraband and interband couplings. Within the
framework of CPA, parameters of intraband coupling are
usually assumed to be equal to the difference in gravity cen-
ters of bands of corresponding alloy components. These pa-
rameters could be extracted from partial DOS obtained in ab
initio band-structure calculations. Since all these parameters
depend on each other, only one parameter ��1 /2��d+� f�
can be used as a free parameter.

III. DOS OF ALLOYS USED IN CPA

The use of ab initio calculated DOS as the starting point
for CPA equations allows one to take into account features of
electronic structure of the alloy components and describe the
alloy kinetic properties in a reliable way. The usual assump-
tion for the initial DOS of alloys used in CPA is average
weighted model. Nothing could be said about physical valid-
ity of this model. However, it seems reasonable to use charge

conservation law for calculation of initial alloy DOS.
Let us assume that the number of occupied states n in

each band of alloy is equal to average weighted number of
occupied states of components

nj = �
�=A,B

c�n�,j . �22�

As the maximum number of f , d, and s electrons in each
subband is limited due to normalization of DOS, the same
expression can be written for empty states,

n̄j = �
�=A,B

c�n̄�,j . �23�

Since the number of electrons in a band is defined by DOS
function of components g��E�, the following expressions for
occupied and empty states can be written, respectively:

�
E0j

EF

gj�E�dE = �
�=A,B

c��
E�,0j

EF,�j

g�,j�E�dE;

�
EF

Ec,j

gj�E�dE = �
�=A,B

c��
EF,�

E�,cj

g�,j�E�dE , �24�

where EF and EF,� are the Fermi energies, E�,0j are the en-
ergies of the bottom of the jth band, and Ecj, E�,cj are the
cutoff energies of DOS of alloy and its components, respec-
tively. The Fermi energy can be determined requiring DOS
continuity at EF.

Solving Eqs. �24�, one obtains expressions for the alloy
DOS,

gj�E� = �
�

c�

EF,�,j − E�,0j

EF − E0j
g�j�EF,� − E�,0j

EF − E0j
�E − E0j� + E�,0j�

for E � EF

and

gj�E� = �
�

c�

E�,cj − EF

Ecj − EF,�
g�j�E�,cj − EF,�

Ecj − EF
�E − EF� + EF,��

for E � EF. �25�

From the same requirement �DOS continuity� the equa-
tion can be deduced,

�
�

c�

EF,� − E�,0

EF − E0
g��EF,�� = �

�

c�

E�,c − EF

Ec − EF
g��EF,�� .

�26�

Solution of the later gives the Fermi energy of alloy:

EF − E0

Ec − EF
=

��c��EF,� − E�,0�g��EF,��
��c��E�,c − EF,��g��EF,��

. �27�

Using the Leman representation

F�z� = �
−�

+� g�E�dE

z − E
, �28�

the initial Green’s function of alloy can be found. This pro-
cedure parameterizes the problem completely. Then partial
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LDA+U+SO DOSs of pure metals are used to calculate al-
loy DOS and solve of system of CPA Eqs. �25�–�27� numeri-
cally.

IV. RESULTS AND DISCUSSION

A. DOS of actinides

Neptunium in bcc phase is stable from 600 K until 644 K
with f4 electronic configuration and have a lattice constant
a=3.488 Å. Plutonium in the fcc phase also known as �-Pu
is stable from 594 K until 725 K and has a lattice constant
a=4.637 Å. Above 925 K or at 6.1�2� GPa Am metal under-
goes the transition into fcc phase with29 a=4.613 Å. At high
temperature or high pressure about 17�2� GPa Cm metal also
transforms into fcc phase.20 In the present calculation for
curium metal the value a=4.47293 Å was used.

The obtained from the LDA+U+SO calculations DOS
curves for all metals are presented in Fig. 1. For plutonium,
americium, and curium they were discussed previously12,16,19

in detail. In the calculations we set the same Coulomb U
value equal to 2.5 eV for all pure metals, which gives correct
equilibrium volume for �-Pu.16 The Hund exchange param-

eters were calculated using “constrained LDA” procedure30

and was found to be 0.48 eV for Np, Pu, and Am, and 0.52
eV for Cm.

In Fig. 1�a� the LDA+U+SO calculated DOS for nep-
tunium metal is presented. Based on the calculated occupan-
cies in j j- and LS-coupling scheme, one can conclude that
the intermediate coupling scheme is more appropriate to
present LDA+U+SO partial DOSs for neptunium. The oc-
cupation numbers in j j-coupling scheme are n5/2=3.13 and
n7/2=1.14. The calculated value of the effective magnetic
moment was found to be �ef f

calc=7.79 �B, which is in good
agreement with the experimental data.31

Note that although both Pu and Am could be described
well in frames of j j-coupling scheme and found to have the
same f6 configuration with zero total moment, the obtained
DOS differs drastically. For both Pu and Am j=5 /2 subband
is occupied and j=7 /2 subband is almost empty. But
whereas the Fermi level cuts the top of occupied j=5 /2 sub-
band in the case of Pu, in the Am case it cuts the bottom of
empty j=7 /2 subband. The center of gravity of j=5 /2 sub-
band is positioned near 1 eV and 3.5 eV below the Fermi
energy in Pu and Am, respectively.

Curium has f7 configuration and effective magnetic mo-
ment about 7�B which lies within the range of available
magnetic-moment values from experiment.31 In curium, a
filled subband lies below the Fermi level from −5 eV to
−2.5 eV and a broad empty subband is positioned just above
the Fermi level up to 3 eV, see Fig. 1�c�. In contrast to Pu
and Am, where the j j-coupling scheme is valid and the oc-
cupied bands �j=5 /2� contain 6f electrons, in Cm some in-
termediate coupling scheme close to LS type is appropriate.18

As a consequence of this, 7f electrons of Cm are located in
an occupied subband presenting a mixture of bands with dif-
ferent orbital character. Thus the occupied subbands of Am
and Cm seem similar, but their orbital character is substan-
tially varied.

B. Residual resistivity: qualitative results

Preliminary qualitative result of RR calculations of ac-
tinides alloys could be found in frames of perturbation
theory. In the second order of perturbation theory �� Im 	s
which means that

��2� � cAcB�
j

	� j
2ImFj	E=EF

�29�

This leads to an ordinary Nordgeim-like result of the RR
concentration dependence with maximum at concentration
equal to 0.5. It was shown previously for the case of ordinary
3d-5d-transition-metal alloys,14 that simple model of average
weighted DOS can provide correct position of the RR maxi-
mum. The maximum is always shifted to metal with the
larger DOS value at the Fermi level in good agreement with
experimental data for all 3d-5d transition-metal alloy. How-
ever, in case of actinide alloys this simple rule can often be
violated due to both many-band type of conductivity and
high scattering intensity.

Actually, one can see from Eqs. �20� and �21� that the sum
of the second and third order terms of perturbation theory for
resistivity gives

0

2

4

6 d- dos
f- dos
total dos

0

5

10

15

D
O

S
(1

/e
V

)

0

10

20

-4 -2 0 2 4
Energy (eV)

0

5

10

Np

Pu

Am

Cm

FIG. 1. �Color online� Results of LDA+U+SO calculations of
partial d- and f-DOS and total DOS of the bcc-Np, fcc-Pu, Am, and
Cm metals. The Fermi level is set to zero.
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��2+3� � cAcB�
j

�� j
2 Im Fj + �cB

2 − cA
2� · � j� , �30�

where

� j = �2�sj
2 � j j Im Fj Re Fj

+ �sj� j j�� j�s�Re Fj Im Fj� + Re Fj� Im Fj��E=EF
. �31�

Concentration dependence of the second term in Eq. �30�
is responsible for the shift of the RR maximum and deter-
mines through the value of � j and sign of � j j�� j�j�� j�j Re Fj
�the values of Re Fj and Im Fj� can be obtained at the Fermi
level�. Since the real part of Green’s function of real alloys is
a rapidly changing function of energy, one cannot predict
position of RR maximum in actinides alloys from this sim-
plified consideration. However, results of this model calcula-
tion of RR with fixed values of Im Fj��EF�, Re Fj��EF�, and
	� j j	= 	� j j�	 are presented in Fig. 2 can be useful for under-
standing of possible types of RR concentration dependen-
cies. One can see that RR curves calculated with Eq. �30�
differs from Nordgeim’s parabola and the change in
Re Fj��EF� sign leads to the shift of RR maximum. The value
of the shift could be determined using a ratio of the first and
second terms in expression �30�. Moreover, one can see from
Fig. 2 that type of the RR behavior changes significantly and
several quasilinear intervals of the RR curve appear.

From the qualitative analysis given above one can con-
clude that accounting for some orders of perturbation series
results in significant modification of the Nordgeim curve.
Hence, all such approximations and omissions of terms
should be seriously justified. The model of RR proposed in
this paper �Eqs. �17� and �18�� avoids this problem because
of the full summation of the series �9�.

C. Residual resistivity: numerical results

Kubo formula for diagonal part of conductivity tensor was
used to calculate realistic alloy RR,

� = ���−1 = �
j,�

2e2�nj

3�2 � dEgj�E�E

� � � j
����

�� − E − 
 j
�����2 + �� j

�����2�2

. �32�

Equation �32� was derived replacing the matrix element of
the squared speed of electron with average kinetic energy:

��x
2�2Ē /m�.14 Nevertheless this rather rough approximation

has no effect on final result since RR concentration depen-
dencies obtained with different values of this matrix element,
or calculated within various approximations, are almost the
same. Apparent limitations on validity of Eq. �32� arise due
to the neglecting of back transitions f�d�→s of conductivity
electrons. This transition should be taken into account only if
the ratio of DOS values of f�d� and s bands at the Fermi
level is large.

As it was mentioned above, it is convenient to use the
difference between gravity centers of 5f bands of alloy com-
ponents as this parameter and to define �dd using initial DOS
of compound. Moreover, we use � j j�=1 /2�� j j +� j�j�� ap-
proximations for the intensities of interband transitions. Note
that relative positions of DOSs of alloy components at the
total-energy scale are unambiguously fixed by � f f parameters
of theory. The values of parameters � f f for Pu and Am were
obtained from the best fitting of the theoretical curves to
available experimental data in Figs. 4 and 6 as 2.65 eV and
5.37 eV, respectively. Using Np gravity center as zero on
total-energy scale, the defined value of parameter � f f for Cm
was found to be 6.7 eV. This set of parameters was used in
all calculations.

1. Residual resistivity of Np-based alloys

Neptunium is a metal with quasimetal type of 5f-electron
behavior and its alloys with other later actinides are of great
interest due to nonordinary evolution of kinetic properties
expected for different concentrations of the alloys compo-
nents. The main cause of this interest is a local minimum in
RR of �-phase Np-Pu alloys found at Np concentration
10÷20%.2 The nature of this unusual behavior of RR is still
unclear. Our calculations allows suggesting that this mini-
mum is attributed to the changes in the DOS value at the
Fermi level.

The results of our CPA calculations for Np-Pu DOSs are
shown in Fig. 3�a�. They indicate significant decrease in the
DOS value at the Fermi level in the vicinity of 10÷30% Np
concentrations. This drop of DOS manifests itself in the cor-
responding minimum of the calculated RR curve for Np-Pu
alloy that qualitatively reproduces experimental data. With
the increase in Pu concentration, the value of alloys DOS at
the Fermi level demonstrates a slight modification and the
configuration factor �cAcB� determines quasiparabolic type of
RR concentration dependence in interval 30÷90% Np, see
Fig. 4, also in good agreement with available experimental
data.

Results of RR calculations �in arbitrary units� for Np-Pu,
Np-Am, and Np-Cm alloys are presented in Fig. 4. Note that
the RR curves for Np-Am and Np-Cm alloys are similar to
the ones obtained earlier in a qualitative consideration of RR,

FIG. 2. �Color online� Comparison of the model RR calculation
results for various values of the ratio � /���=� j� j

2 Im Fj� and the
Nordgeim curve.
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see Fig. 2. The maximum of these curves is significantly
shifted from the point of equal concentration. Whereas, de-
spite a local anomaly in the RR curve for Np-Pu alloy, which
might be caused by the impurities and radiation damage of

the samples,2 it is even more similar to the Nordgeim pa-
rabola, and the position of the RR maximum has a minimal
shift from the equal concentration point. These differences
originate from the different modification of alloys DOS at
the Fermi level with concentration. In all considered alloys
quasilinear region of RR concentration dependencies was
found in agreement with our previous qualitative result.
However, one can see that the evolution of the calculated
DOS values at the Fermi level for Np-Am and Np-Cm alloys
is not so significant as in Np-Pu case. The former concentra-
tion dependencies of RR are close to the ones of ordinary
transition-metal alloys.

2. Residual resistivity of Pu-Am and Pu-Cm alloys

The CPA results of the Am-Pu and Cm-Pu alloys DOS
calculations are presented in Fig. 5. As in the case of the
Np-based alloys, one could conclude that initially localized
j=5 /2 and j=7 /2 5f-electron states are unstable and could
easily be destroyed by alloying with another metal. However,
in case of Pu-Am alloys, signs of weak localization are pre-
served in all concentration regions, which qualitatively
agrees with the modern photoelectron spectroscopy data.3

The DOS values at the Fermi level in alloys are changed not
drastically, and therefore the RR calculated curves in Fig. 6
are in better agreement with the qualitative results.

Experimental data for concentration dependence of RR
for Pu-Am alloys are reported only for several samples with

-8 -6 -4 -2 0 2 4 6 8 10 12
Energy (eV)

0

1

2

3

4

5
Pu

90
Np

10
Pu

70
Np

30
Pu

50
Np

50
Pu

30
Np

70
Pu

10
Np

90

-8 -6 -4 -2 0 2 4 6 8 10
Energy (eV)

0

2

4

6

8

D
O

S
(1

/e
V

)

Am
90

Np
10

Am
70

Np
30

Am
50

Np
50

Am
30

Np
70

Am
10

Np
90

-12 -8 -4 0 4 8 12 16
Energy (eV)

0

0.5

1

1.5

2

2.5
Cm

90
Np

10
Cm

70
Np

30
Cm

50
Np

50
Cm

30
Np

70
Cm

10
Np

90

FIG. 3. �Color online� Density of states of Np-Pu, Np-Am, and
Np-Cm alloys as a function of compound concentration calculated
by the CPA method.
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and Np-Cm alloys. Experimental data are taken from Ref. 2.
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Am concentration 8, 23, 28, and 43%.3 One can see that the
results of our calculations are in qualitative agreement with
the experimental data on average. The deviations from the
experimental points could arise from strong modifications of
lattice parameter, not taken into account in the CPA calcula-
tions. On the other hand, only one point �23%� falls out from
a smooth curve that requires additional experimental RR data
in this region of concentrations.

Unfortunately, no experimental data are available for
Cm-Pu alloys, and hence the presented results Fig. 6 could
be considered as a prediction.

3. Residual resistivity of Am-Cm alloys

Our calculations for Am-Cm alloys predict a normal type
of RR behavior, see Fig. 7, due to nondrastic changes in
DOS values at the Fermi level with concentration, Fig. 8. On
the other hand, the RR maximum has significant shift to
americium. This feature could be explained if we take into
consideration that the value of DOS of Am exceeds the Cm
one. The second component reduces the DOS of alloy in
such a way that its value at the Fermi level decreases with
the decrease in Cm concentration.

V. CONCLUSION

In this paper the CPA equations for many-band conduc-
tivity model were derived. In this derivation we obviate a
necessity to use several artificial and debatable models and
any assumptions concerning the specificity of DOS near the
Fermi level. Also no assumptions on weakness of the inter-
action were made for RR calculation for all real systems
under consideration. Then, in terms of the proper model,
some qualitative results for RR concentration dependencies
were obtained within the perturbation theory and discussed
in detail. Starting from the results of numerical simulations
of band structure for bcc-neptunium, fcc-plutonium, ameri-
cium, and curium, the RR concentration dependence of these
metals alloys was analyzed from the most general point of
view, in terms of many-band conductivity model. The com-
plex structure of d and f electron DOS and their deforma-
tions due to electron-impurity interactions were accounted.
Initially localized j=5 /2 and j=7 /2 5f electron states of
fcc-Pu and Am are unstable and could easily be destroyed by
alloying with another metal. The traces of localized electron
behavior were obtained only in case of Am-Pu alloys.

Local anomalies of RR in Np-Pu alloys originate from
strong modification of DOS value at the Fermi level. Ordi-
nary concentration dependencies of Np-Am and Np-Cm al-
loys were reproduced numerically. The obtained theoretical
results for residual resistivity were compared with a few
available experimental data reported in the literature. Good
agreement with experiment was found for Np-Pu and Am-Pu
alloys. Additional experiments for these alloys are required.
Normal type of RR concentration dependencies in Pu-Am,
Pu-Cm, and Am-Cm alloys were obtained. No considerable
changes in DOS value at the Fermi level were detected in
these alloys and hence RR curves have an ordinary behavior.
It should be emphasized that the shape of RR curves ob-
tained qualitatively and numerically for real alloys are in
general the same.
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FIG. 7. �Color online� Residual resistivity of Am-Cm alloys.
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